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The Young's modulus of 1 5 commercial dental particulate filled composites was measured 
with three different methods. The materials were tested with static, low-frequency, and high- 
frequency elastic deformations. The analysis of the results shows that the frequency depen- 
dence of the Young's modulus of elasticity follows the same empirical law for all frequencies. 
Furthermore, knowledge of the Young's modulus for the resin component at all frequencies 
suffices to predict the Young's modulus of any particulate-filled composite. 

1. Introduct ion 
In recent publications [1-3], the present authors 
reported on an investigation of the Young's modulus 
of commercial and experimental dental particulate 
filled composites. Besides these materials, the unfilled 
matrix phase and amorphous silica were also tested. 
The composites showed a wide variety in the com- 
position of the matrix phase as well as in the origin, 
shape, size, and particle-size distribution of the filler 
phase. Young's modulus was determined by a non- 
destructive dynamic method using the fundamental 
frequency, which ranged between 2 and 4 kHz for the 
composites. A statistical analysis of the Young's 
moduli as a function of the volumetric filler fraction 
resulted in an exponential rule of mixtures between the 
matrix and the filler phase [1, 2]. 

There are other dynamic and static tests that can be 
used to determine Young's modulus. Ultrasonic tests 
are conducted from 5MHz [4] to 30MHz [5]; the 
torsion pendulum acts at rather low frequencies [6]; 
the dynamic mechanical thermal analysis measures 
elastic and loss components of a forced vibration at 
variable frequencies [7]; and the three-point bending 
test acts at 0Hz. The literature gives substantial 
differences in the reported values for the Young's 
modulus of dental composites, depending on the test 
method used. 

Therefore, the aim of the present paper is to 
investigate the influence of the test frequency on 
the Young's modulus of dental particulate filled 
composites. 

2. Experimental  methods 
2.1. Materials and sample preparation 
For a detailed description of the materials and sample 
preparation, see Braem [1]. Fifteen composites were 
selected for the present investigation: eight self-cured 
composites, which polymerize by mixing a base and 

catalyst paste, and seven light-cured composites, 
which polymerize after irradiation with 400-500 nm 
visible light (Table I). Rectangular samples (length, 
l = 35mm; width, w = 5mm and height, Th = 

1.5mm) were prepared according to the manufac- 
turers instructions. The light-cured samples were illu- 
minated for 60sec on the top surface and for an 
additional 60sec on the bottom surface (Luxor 
Activating Unit, ICI, Macclesfield, UK). All samples 
were finished with dry 600 grit abrasive paper, and 
stored for 24 h at room temperature before testing at 
ambient temperature conditions. 

2.2. The fundamental period test (FPT) 
The complete description of this dynamic technique 
and the method for determining Young's modulus 
from the fundamental period for the first harmonic of 
the freely oscillating sample are given by Braem I!] 
and Braem et aL [2]. (See also Fig. 1.) The results cited 
here are taken from these publications. Ten samples of 
each composite were tested in these investigations. 

2.3. The dynamic mechanical thermal 
analysis test 

The equipment used is the dynamic mechanical ther- 
mal analyser (DMTA) of Polymer Laboratories Ltd, 
Loughborough, UK (Fig. 2). A harmonic stress at 
constant frequency is applied to a clamped sample. 
The analyser unit compares the applied stress and the 
corresponding strain signals. The visco-elastic proper- 
ties of the materials cause a time lag between input and 
output signals giving rise to storage and loss com- 
ponents of the strain, which are resolved by the count- 
ing circuits. A single cantilever set-up was chosen 
(Fig. 2, inset) with some minor modifications in 
the clamping device to compensate for the imperfect 
parallellity of the sample surface planes. The samples 
were tested at 0.1, 1 and 10Hz. Three samples of each 
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T A B L E  I Products, initiation type, batch numbers, and manufacturers. S = self-cured; L = light-cured 

Product S/L Batch number Manufacturer 

P-10 S 112983 3M Co, St. Paul, MN, USA 
P-30 L Exp. Lot 5 
Silar S 8601A + 8601B 
Silux L 041183 5502 U 4Y3 
Adaptic S 053183 3A001 
Miradapt S 3D906 24051904 
Answer S 201804 21300 
Occlusin L Lot SP06 Mar 84 
Estilux posterior Y L 061984 182 
Durafill L 061984 139 
Biogloss S 840522 
Brilliant S 150584-36 
Brilliant Lux L D3 120684-20 
Isomolar S B551183 + C701183 
Heliomolar L 050384 

Johnson & Johnson, East Windsor, NJ, USA 

ICI Plc, Macclesfield, UK 
Kulzer & Co GmbH, Bad Homburg, West Germany 

De Trey AG, Ziirich, Switzerland 
Colt6ne AG, Altst/itten, Switzerland 

Vivadent, Schaan, Liechtenstein 

product were prepared with the same finishing and 
storage conditions as described above, and were tested 
under the above conditions. 

2.3. The static test (STAT) 
In the three-point bending apparatus (Dynstatgerfit 
5106, Zwick and Co., Einsingen, West Germany), a 
small metal rod bends the sample between two knife- 
shaped edge supports (Fig. 3). A digital gauge records 
the bending of the sample in micrometers. For each 
bending interval (AU), a corresponding force interval 
(AF) is recorded. Young's modulus is then calculated 
using Equation 1: 

l 3 AF 
E - 4wh3 A U  (1) 

where l is the length of the sample segment between 
the supports, w the width of the sample, and h the 
height. Three samples of each product were also tested 
under the same finishing and storage conditions as 
described above. 

3. Results  
Table II gives the results of the measurements for the 
three different methods. These measurements yield 

values of Young's modulus at five different frequen- 
cies: at 0Hz for the STAT, 0.1, 1 and 10Hz for the 
DMTA and at the fundamental frequency for the 
FPT, which ranges from 2 to 4 kHz for the composites 
and 7 kHz for the silica. An additional investigation 
with the FPT procedure showed that changing the 
thickness of the sample enabled us to obtain a con- 
stant resonance frequency of 4kHz for each tested 
composite (Table II). The resulting Young's moduli 
did not differ significantly from the FPT results with 
constant dimensions but variable fundamental fre- 
quencies, which implies that Young's modulus is con- 
stant within that frequency range. Therefore, the fre- 
quency range between 2 and 4 kHz will henceforth be 
considered as one resonance frequency. 

For each of the five different frequencies, a regres- 
sion analysis was performed in order to determine the 
dependency of Young's modulus on the volumetric 
filler fraction. In a previous paper [2], it was shown 
that the regression curve is of the form 

/~ = /~r exp (bx) (2) 

where /~ is the calculated Young's modulus of the 
composite, /~r is the calculated Young's modulus of 
the unfilled resin, x is the volumetric filler fraction, 

- - ' - - 2  

Figure 1 Schematic presentation 
of the rectangular sample (1) rest- 
ing on two triangular supports 
(2). The microphone (3) is under 
the sample; the metal hammer (4) 
with the electromagnet (5) is 
above the sample. / is length, w is 
width, and Th is height (thick- 
ness) of the sample. 

4052 



Figure 2 Mechanical head of the DMTA showing the sam- 
ple mounting (inset) with (4) clamps, (5) sample; the vibrat- 
ing system (1), displacement transducer (2) and drive shaft 
(3); (6) temperature enclosure; (7) liquid nitrogen gates. 

and  b the coefficient. The  values o f  the pa r ame te r s  Er, 
In/~r, and  b for  the five frequencies are given in Tables  

l I I  and  IV. They  also give the 95% conf idence inter-  
vals (CI) for these pa rame te r s  using s t anda rd  for-  
mulae.  Fig. 4 shows the five plots  o f  In f" aga ins t  x. 
The  results men t ioned  in these tables for  the F P T  
p rocedure  are  cited f rom [1]. 

4. Discussion 
A l t h o u g h  there is a slight increase o f  Y o u n g ' s  m o d u -  
lus for  the unfilled resin in the D M T A  m e t h o d  f rom 
0.1 to 10Hz,  the results o f  Table  I I I  show tha t  the 
differences are  no t  s ta t is t ical ly  significant.  Fu r the r -  
more ,  the difference between the S T A T  and  D M T A  

results are also insignif icant  due to s ta t is t ical  f luctua-  
tions. But the CI o f / ~  for  the F P T  (2692-3578 M P a )  
does not  over lap  with the CIs of  any  o f  the four  o ther  
frequencies,  which indicates  that  Y o u n g ' s  modu lus  o f  
the resin c o m p o n e n t  increases with h igher  frequencies,  
at  least up to the resonance  frequency.  

F r o m  Fig.  4, it is clear  tha t  Y o u n g ' s  modu t i  o f  the 
pure  silica for  all five frequencies do  not  differ signifi- 
cantly.  The  ca lcu la t ion  o f  E for  x = 1 ( represent ing 
pure ly  the filler phase)  f rom E q u a t i o n  2 for  the F P T  
yields a value o f  60 259 M P a  with  a 95% CI between 
5 1 9 9 0 M P a  and  6 9 8 4 3 M P a .  A n  accep tab le  value 
(64673 M P a )  was ob ta ined  by  the au thor s  with the 
S T A T  test. 

Fig. 4 seems to indicate  tha t  the curves at  different  
frequencies a p p r o a c h  the value o f  Y oung ' s  modu lus  
for  silica, which is a b o u t  70 000 M P a  [8], ex t r apo la t ed  
to 100% filler concen t ra t ion .  But, for  the unfilled 
resin, the me thods  used yield different  results,  for 
which the slope (b) decreases with increas ing fre- 
quencies.  However ,  this impress ion  could  not  be 
d e m o n s t r a t e d  stat is t ical ly,  as can  be seen f rom 
Table  IV, since all the CIs of  the coefficients b for  the 
five frequencies clear ly over lap .  This  is due, o f  course,  
to the large s t andard  deviat ions Sb for  the S T A T  and the 
D M T A  methods ,  between 0.44 and  0.60, as c o m p a r e d  

TABLE II Dynamic Young's moduli under flexure (in MPa) for the different methods and volume percentage of inorganic filler 
(VFC) of dental composites [I] 

Product VFC STAT (MPa) DMTA (MPa) FPT (MPa) 

(%) 0Hz 0.1 Hz 1Hz 10Hz 2 kHz-4kHz 4kHz 

Mean ± S.D. Mean ± S.D. Mean ± S.D. Mean ± S.D. Mean ± S.D. 

P-10 69.1 13997 _+ 848 14125 ± 326 14791 ± 410 15488 ± 418 25117 ___ 429 25706 
Occlusin 69.0 16532 _ 503 12886 ± 218 13808 ± 21l 14458 ± 180 23774 ± 225 23605 
P-30 69.6 16396 ± 427 13647 ± 112 14458 ± 130 15140 ± 112 23385 ± 223 24110 
Adaptic 58.4 12697 ± 336 12883 ± 537 13490 ± 676 14125 ± 568 21412 ± 230 20170 
Miradapt 63.2 12666 ± 729 12023 ± 168 12589 ± 121 13183 ± 120 20320 ± 196 19281 
Estilux posterior 58.1 9856 ± 492 9705 ± 148 10000 ± 132 11482 ± 143 17408 ± 476 18057 
Brilliant 53.9 9951 _+ 645 10233 __ 403 10715 ± 437 11220 ± 461 16586 ± 276 15498 
Biogloss 51.9 9017 __+ 604 9205 ± 208 9795 ± 187 10233 _+ 197 15190 ± 385 14483 
Brilliant Lux 49.8 8544 ± 244 6824 ± 109 7719 ± 56 8541 _+ 77 14451 ± 176 14322 
Heliomolar 49.1 6415 ± 284 5445 ± 229 6061 ± 276 6631 ± 30I 10612 ± 240 1064t 
Answer 39.7 5718 ± 323 3119 ± 182 4436 ± 193 4775 ± 208 9932 _+ 275 10281 
Isomolar 45.3 3912 ± 339 4677 ± 114 5333 ± 129 5984 ± 126 9619 +_ 307 10120 
Silux 36.3 5912 ± 247 5140 ± 17~7 5534 ± 214 5916 ± 242 9382 ± 155 9066 
Silar 35.4 5565 ± 228 5848 ± 43 6194 ± 40 6501 ± 49 9075 ± 167 8447 
Durafill 37.5 2877 ± 196 2825 ± 162 3289 __+ 119 3837 ± 113 6085 + 88 6664 
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I 1 I I 4 1 
Figure 3 Schematic presentation of the static test (STAT) used: (1) 
supports; (2) rectangular sample; (3) metal rod transmitting the 
load; (4) digital gauge and micrometer recording the bending of the 
composite sample. 

to the standard deviation s b of 0.14 for the FPT 
method. This large difference is a direct consequence 
of the smaller numbers used in the present investiga- 
tion. One may suppose that an increase in the number 
of samples in both the STAT and the DMTA could 
well lead to statistically significant differences. Strong 
support for such an hypothesis is given in Table V 
where the CIs of the coefficients b have been calcu- 
lated with the same standard deviation s b of 0.14 
as obtained from the FPT method with 57 composites. 
The overlap between CIs then disappears except 
for a very small interval of 0.05 between FPT and 
DMTA at 10Hz. This approximation does indeed 
indicate that the coefficients b decrease with increasing 
frequencies. 

The results shown in Fig. 4 are in agreement with 
the interpretation of the physical processes involved. 
Pure silica behaves like an elastic amorphous material, 
so one would expect Young's modulus to be indepen- 
dent of frequency, at least in the investigated range. 
Resin, however, is a visco-elastic material that exhibits 
relaxation processes. With some simplification, 
relaxation phenomena are described by the product of 
the frequencyftimes the relaxation time ~, where ~ is 
an exponential function of the inverse of the tem- 
perature. Therefore, at lower temperatures, i.e., at 
higher frequencies, relaxation effects are frozen out, so 
there is less strain for the same stress and hence a 
higher Young's modulus. At lower temperatures the 
material also becomes stiffer, which also augments 
Young's modulus. In between a pure resin and silica, 
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Figure 4 Regression analysis for the three methods for five fre- 
quency ranges. The volumetric filler fraction is given on the 
abscissa; the natural logarithm of the Young's modulus in MPa is 
given on the ordinate. 

the logarithm of the Young's modulus of a composite 
is a linear combination of the logarithm of the moduli 
of the phases [1, 2]. 

From Fig. 4 and the results in Tables III and IV, it 
is obvious that Equation 2 is, in fact, a function of 
frequencyf as follows 

/~(f, x) = £ ( f )  exp [b(f)x] (3) 

where b-= I n / ~ -  in/~r(f), and /~ the constant 
value of Young's modulus for pure silica. This means 
that the Young's moduli of the different composites 
for two different frequenciesf~ and f2 are related by a 
simple power law: 

/~, = CE'~ (4) 

where subscripts 1 and 2 refer to the two frequencies, 
and 

c = (5) 

with 

d -  bl (6) 
b2 

However, in applying these formulae one must take 
into account the CIs for the different coefficients b and 

T A B L E  1II Values of/~r and In/~ with 95% Cls for the dif- 
ferent frequencies. N stands for degrees of freedom 

Method N In Er CI(InL) L CI(E~) 
(MPa) (MPa) 

STAT 0Hz 13 6 .93  (6.30, 7.57) 1027 ( 545, 1934) 
DMTA 0.1Hz 13 6.88 (6.19, 7.57) 975 ( 490, 1939) 

1.0Hz 13 7.14 (6.58, 7.71) 1266 ( 722, 2221) 
10.0Hz 13 7.29 (6.78, 7.79) 1459 ( 879, 2420) 

FPT 55 8.04 (7.90, 8.14) 3 1 0 3  (2692, 3572) 

T A B L E  IV Values of coefficient b with corresponding stan- 
dard deviations (Sb) and 95% CIs for the five different frequencies. 
N stands for the degrees of freedom 

Method N b s b Cl(b) 

STAT 0Hz 13 4.03 0.55 (2.85, 5.22) 
DMTA 0.1 Hz 13 3.93 0.60 (2.65, 5.22) 

1,0Hz 13 3.61 0.49 (2.56, 4.66) 
10,0 Hz 13 3.48 0.44 (2.53, 4.43) 

FPT 55 2.97 0.14 (2.69, 3,25) 
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Figure 5 Results obtained with the DMTA 
at 0.1 Hz against those obtained with the 
FPT. 

Young's moduli /~. For example, comparing the 
results of the STAT at 0Hz (subscript 1) and DMTA 
at 10 Hz (subscript 2), one finds from Table IV that the 
CIs of the coefficients b overlap in the same way as the 
CIs of E~. This is even more pronounced in Table V. 
This means that d equals 1 and C equals 1 within 
statistical significance, so that /)t equals E2. Even a 
better case is made in comparing the results of the FPT 
at resonance frequencies with the DMTA at 0.1 Hz. 
From the results of Tables III and IV one finds that 
C = 16.60 and d = 0.76. Furthermore, a linear 
regression analysis of the logarithm of Equation 4, i.e., 

ln/~l = l n C  + dinE2 (7) 

where E l and E: are the Young's moduli, respectively, 
at resonance frequency and at 0.1 Hz (Table II), yields 
C = 13.90 and d = 0.78. Their 95% CIs are (3.81, 
50.66) and (0.63, 0.92), which shows that the predicted 
values C = 16.60 and d = 0.76 are corroborated by 
the statistical analysis. Furthermore, the CI of d (0.63, 
0.92) excludes (p < 0.05) the value 1 (bl = b2), which 
would have yielded a linear dependence of the 
Young's moduli at the resonance frequency and at 
0.1 Hz. ]?'his deviation from linearity is shown in 
Fig. 5. 

4. Conclusions 
The above discussion leads to the following important 
conclusions for the frequency range between 0 and 

T A B L E  V Values of  coefficient b with corresponding standard 
deviations (sb) and 95% CIs for the FPT results. N stands for the 
degrees of freedom 

Method N b sb Cl(b) 

STAT 0Hz 55 4.03 0.14 (3.75, 4.31) 
DMTA 0.1Hz 55 3.93 0.14 (3.65, 4.2l) 

1.0Hz 55 3.61 0.14 (3.33, 3.89) 
10.0 Hz 55 3.48 0.14 (3.20, 3.76) 

FPT 55 2.97 0.14 (2.69, 3.25) 

about 7000 Hz, which is the resonance frequency for 
the silica: 

The Young's modulus of elasticity at all frequencies 
follows the same exponential law as a function of the 
filler fraction (Equation 3). 

Because the Young's modulus of pure silica remains 
constant between 0 and 7000 Hz, it suffices to know 
the frequency dependence of the resin component to 
predict the Young's modulus of any particulate filled 
isotropic composite. 
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